
MKo!

9$q

Sfe.CA 93940

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CAL

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A STUDY OF QUANTITATIVE MEASUREMENTS

OF PROGRAMMER PRODUCTIVITY FOR
FLEET MATERIAL SUPPORT OFFICE (FMSO)

by

Daniel John Spoone'
December, 1982

Thesis Advisor Dan C. Boger

Approved for Public Release; Distribution Unlimited

T208081

SECURITY CL*1II»ICATIQW OF TwH P*q| (Wham Dmm fanwQ

REPORT DOCUMENTATION PAGE
HI^OUT NUMlIK I. OOVT ACCESSION NO

4 TiTLC fa** Summit)

A Study of Quantitative Measurements
of Programmer Productivity for

Fleet Material Support Office (FMSO)
i. *_"-;«.

Daniel John Spooner

• PERFORMING OAOANIZATION NAME ANO AOORSIS

Naval Postgraduate School
Monterey, California 93940

1 I CONTROLLING OMICI N AMI ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

T3 moniToRins aqCmcy name * AOONCStVf/ mSStmu Contemning Olfiet)

READ INSTRUCTIONS
BEFORE COMPLETINC FORM

i seCi^itNT'j catalog number

S. Tv»t Of REPORT A PERIOD COVEREO
Master's Thesis
December, 1982
«. PERFORMING ORG. RCPORT NUMBER

• • CONTRACT OR GRANTNT NUMBERf.J

"»5~TrogrP^TlTa7enTTr^^ct^FTsTAREA A WORK UNIT NUMICKS

12. REPORT OATE

December, 1982
II NUMBER OF PAGES

It. SECURITY CLASS, (ml th,, ra>orfj

Unclassified

ISa. DECLASSIFICATION/ OOWN GRADING
SCHEDULE

«. DISTRIBUTION STATEMENT ft f*ft Hmmmrt)

Approved for Public Release; Distribution Unlimited

7 DISTRIBUTION STATEMENT (at Ihm smttrmei mnttrva In Sloe* 30. II dltlmrmnl hmm Rmpon)

• SUPPLEMENTARY NOTES

» ICEY WORDS Cmhixui an rmwmtmm .<«• // nmcfmrr mnm «Nmci/V Ay »ioc« nuMfcar.)

Programmer Productivity, Software Development Productivitv
Programmer Metrics

20 ABSTRACT rCaaillnu* an /••»•»•• *iom) If «*ca««arr ana Itmmtltr »r llici atapaaO

The demand for software products has grown, but the number of
quality programmers has not kept pace. Therefore, programmer
productivity has become a major area of discussion throughout the
software development industry. This paper examines the various
measures discussed in the literature and used in selected corpora
tions which develop software. It presents several methods for
measuring programmer productivitv. Included in the (Continued)

do , :::*» wi EDITION 0^ I MOV • IS OBSOLETE
S/N 0103*014* -.60 1

I

kill ,*Tian Data Kntmr»a)

ABSTRACT (Continued) Block # 20

discussion are the salient points where managers must devote specia
attention if they are to use programmer productivity measures ef-
fectively. This paper is part of a group of papers which together
provide recommendations to the Fleet Material Support Office (FMSO)
to enhance its software development organization.

DD Form 1473
1 Jan 73

Approved for public release; distribution unlimited

A Study of Quantitative Seasurements
of programiar Productivity for

Fleet Material Support Office (FMSO)

by

Daniel John Spooler
Lieutenant, United States Navy

. S. , Pennsylvania State JnLversity, 1977

Submitted in Darrtial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
December 1932

c\

LIBRARY, NAVAL POSTGRADUATE S<
MONTEREY, CA 83940

&BSTBACT

The demand for software products has grown, but the

number of quality programmers has not kept pace.

Therefore, programmer prodcutivity aas become a major area

of discussion throughout the software development industry.

This paper examines tha various measures discussed in the

literature and used in selected corporations which develop

software. It presents several methods for measuring

programmer productivity. Included ia the discussion are the

salient points where managsrs must ievote special attention

if they are to use programmer productivity measures effec-

tively. This paper is part of a group of papers which

together provide recoam=a dations to the Fleet Material

Support Office (FMSO) to enhance its software development

organization.

TABLE OF CONTENTS

I. INTRODUCTION 7

II. WHOSE PRODUCT IS BEING MEASURED? 11

III. WHAT IS THE PRODCJCr? 18

A. PROJECTS AS PRODUCTS 19

E. MILESTONES AND M ANA3EMENT/SUPPORT 21

C. DESIGN AND FUNCTIONAL SPECIFICATIONS 23

D. LINES OF CODE A3 A PRODUCT 24

V MODULE AS PRODUCTS 27

F. USER FUNCTIONS AS PRODUCTS 31

G. TESTING, INTEGRATION, AND IMPLEMENTATION . . . 34

H. DOCUMENTATION 35

IV. THE MEASURES 37

A. LOC PER PROGRAMMER-MONTH 33

E. MODULES PER MOSIH 40

C. FUNCTION POINT DELIVERED PER WORK HOUR 40

D. SELECTED INDUSTRY METHODS FOR MEASURING

PRODUCTIVITY 41

1. I3M 41

2. Amdahl 44

3. Systems Devalopnent Corporation (SDC) . . 47

4. TRW 48

V. CONCLUSIONS AND RECOMMENDATIONS 49

LIST OF REFERENCES 51

BI3LIOGRAPHY 54

APPENDIX I 57

APPENDIX II 5 9

IHITIAI DISTRIBUTION LIST 80

LIS! OF FIGORE5

1.1 FMSO Program Library Srowth 10

2.1 Riser: Levels of S ote in Software Productivity . 11

2.2 FMSO Major Mission Arsas 12

2.3 FMSO CDA Primary Product Arsas 13

3.1 Software Developnsnt Products 19

4.1 Assembler Language vs HOL 39

4.2 Halstead Element Relationships 42

In the past two decades, as computer hardware costs have

fallen and software costs have risen, +-here has been an

increasing interest in programmer productivity. This

interest has become particularly intense during the last

decade as the general purpose computer market has flour-

ished. Customers are becoming much more aware of the

flexibility that different software packages provide to

computer hardware. They, therefore, are demanding more and

more software products to upgrade existing hardware facili-

ties. Rithington [Ref. 1] of Arthir D. Little Inc., a

Cambridge (Mass.) consulting firm, states that the throt-

tling factor in the evolution of the data processing

industry is the pace of software development. Revenues in

the data processing industry are expected to reach 395

billion by 1984 but have the potential to reach $125 billion

if the software development constraint did not exist. This

software demand has precipitated a large demand for program-

mers. But programmers, especially stilled ones, are hard to

find and take time to train. Since there has been such an

astronomical growth in the computer software industry,

finding sufficient numbers of well trained and experienced

programmers is prohibitively difficult. [Ref. 2], According

to Digital Equipment Corporation * Bef . 3], the biggest

problem is identifying the few gnoi programmers. Of the

many applicants they receive, most are not capable of

writing sophisicated software. Consequently , software

developers are turning towards increasing the productivity

of programmers in an attempt to keep pace with the demand

for current and future software design needs.

There have been a number of papers writtsn discussing

pro ductivity. Some discuss deterainants of programming

productivity [Ref. 2], others provide tools (Ref. 4], which

purport to improve productivity. Interestingly, few of

these studies discuss or aake reference to others who have

discussed how to actually measure this productivity. The

philosophical approach foe many years was that programming

was an art. This made it virtually impossible to measure,

for it would be similar to measuring the progress or produc-

tivity of a Picasso or Michelangelo as he was painting or

sculpting. Obviously, there is 10 way to leasure the

progress of art aside froa personal opinion. This, however,

is not acceptable in an industry based on the profit motive.

In the late 1 9 60 » s the tera "Software Engineering" was

coined and with it came a number of ideas that served to

pull programming out of tha world of art and into the world

of the engineer, a woeLd where neasurement is of vital

importance. Software development «a= shown to be an area

that required discipline and a process-oriented approach

[Ref. 5].

Software engineering has grown through the 1970 's to

virtually become the rule for the management of programming.

It has led to the development of new strategies for software

development. These strategies, top-down design, bottom-up

design, structured prgraaming, moiular decomposition and

metaprogramming , have provided a better foundation from

which software developers can attempt to meet the growing

ieaar.d fcr software products. Although these development

techniques have made software development easier and helpei

tc control the cost growth, they have had little impact on

productivity measurement.

To discuss the measuring of software development or

programming productivity, one must first determine what the

product is. From the first day of programming until the

present, the predominant product of discussion has been the

"line of code" (LOC) . This is tha product on which nearly

all research and the database information are based. If one

were a construction engineer one would not discuss a

building or brid ce based on the number of bricks and girders

used. Instead, rooms or floors or spans might be much more

appropriate. These items are integral but separately

measureable components of the final product. So why r

rhetorically, do researchers and data base information

collectors continue to insist on L03 measures instead of au

integral and separately measureable and meaningful component

of software engineering? This not a question for this paper

to answer but one for the reader to consider when planning

his own research or data base collection.

The Fleet Material Support Offisa (FMSO) is experiencing

the same Droblems as the rest of the software indusrty. It

is faced with a huge demand for quality software from the

organizations it is tasked to support. The tasking of the

pas* five years is shown in Figure 1.1 below. These figures

are only for the Central Design Agency, the primary mission

of FMSO. The figures show an increase in FMSO maintained

programs of 75.4 percent in this short period. These

figures are expected to continue to rise at a significant

rare as the Navy continues to automate more and more func-

tions. Another problem facing FMSO is the salaries of the

programmers. According to Business ifeek [Ref . 5] programmer

salaries are rising at a rate of 15 percent annually and

salaries for top systems analysts can reach $50,000 a year.

This places an extreme burden on the personnel department to

acquire top personnel when hiring new programmers and

systems analysts. Thi productivity issue becomes

increasingly critical for FMSO in the light of the hiring

freeze imposed during the Carter administration and the

drive to reduce the cost of government in ~he present Reagan

administration.

CDA Program Growth

FY
77 XXXXXXXXX 5,389

78 XXXXXXXXXXXXX 6,423

79 XXXXXXXXXXXXXXXXXX 7,722

80 XXXXXXXXXXXXXXXXXXXX 7,938

81 XXXXXXXXXXXXXXXXXXXXXXXXXX 9,030

32 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 9,454 (April)

Figure 1.1 FMS3 Program Library Growth.

This paper attempts to presant a number of issues

related to the measuring of programmer productivity. It

will show that there are a other factors that impact on how

on2 interprets the productivity figures. The manager needs

to realize there are several different levels of the organi-

zation, each with its :wn product or set of products.

Therefore, each level has a productivity rating for which it

must be responsible. In fact, the reader should note that

the programmer is not the predominant link in the output of

a programming project. lie reguirsments of the Department

cf Defense and conscientious software developers throughout

the industry has placed increasing importance on the relia-

bility and maintainability of software. This new emphasis

has produced a whole array of corresponding products which

must be accounted for and new productivity levels which must

be examined.

13

II. WHQSE PRODgCT IS BEING MEASURED?

When discussing productivity, before one can consider

who to measure, one must first determine what the product is

and then who makes the product. Without a rational visuali-

zation of the product it is unintelligent to discuss the

ability of a person's, group's or machine's ability to

deliver tKat product. Depending apon the level of the

organization at which one looks there will be a variety of

goals, objectives and products. Both Kiser [Ref. 7, p. 244]

and the IEEE Workshop d n Software Productivity [Ref. 8]

address this important issue.

Where the IEEE Workshop focused Dr. the general area of

productivity, Kiser was most concerned with software manage-

ment productivity. She focused on the idea that the manager

often has as much to do with a programmer ' s productivity as

does the programmer himself or his tools. This is a nontri-

viai issue. She lookei at the top three levels of

Figure 2.1 Kiser: Levels of Note ia Software Productivity.

management, shown in Figure 2.1 . flany managers have failed

to understand why their people, being well-trained and

11

provided with excellent tools, continue to produce at unsa-

tisfactory levels. Quite often, from this researcher's

experience and the experi a nee provided by Kisec, the poor

production levsi is caused by higher level managerial poli-

cies or actions. This can be understandable when one

examines the concerns of tie various nanagement levels.

At the corporate lsvel, top management is usually

concerned with profit maximization aad market share. FMSO,

being part of the public sector, d^es not have this parti-

cular concern but there are comparabLe goals (Figure 2.2)

CENTRAL DESIGN AGENC? (CDA)

RETAIL NAVY 5T0CK FUND

OPERATIONS ANALYSIS

SUPPLY OPERATIONS SaPPORT

INTERNATIONAL LOGISTICS

Figure 2.2 FMSO Major Mission Areas.

which are fleet support aid effective management of their

approximate S3. 8 billion, FY82, procurement authority. When

one considers the impact of money management at this level

it is understandable that concerns for indiviual programmer

productivities can get lost. The interpretation of top

level management polices ay lower level managers can also

affect productivity.

At the middle management level, managers become

concerned with specific product development and resource

allocation. For FMSO, in its primary mission area as a CDA,

management is concerned i ith allDcation of resources to

12

UNIFORM AUTOMATED DATA PROCESSING SYSTEMS (UADPS)
Uniform ADP System for Inventory Control

Points (UliP)
UADPS Stock Points (JADPS-5P)
Level U/III Stock Points
Disk Oriented Supply Systen (DOSS)

HEADQUARTERS FINANCIAL SYSTEMS

MANAGEMENT INFORMATION SYSTEM FDR INTERNATIONAL
LOGISTICS - (MI3IL)

SPECIAL DATA PROCESSING SYSTEMS PROJECTS
Reauisiticn Material Monitoring and

Expediting (SMM5E)
Trident
Naval Aviarion Logistics Command Management

Information System (NAL3DMIS)
Naval Automated Transportation Data System

(NATDS)
Naval Automated r rans portaion Documantation

System (NHVi)S)
Resolicitation

Figure 2.3 FMSO CDA Primary Product Areas.

respective product areas as shown in Figure 2.3 below. The

allocation of the resources is tempered with the command

goals and the budget provided by the various sponsors.

The first lire level of managemeit, project management,

is where one fLzsz encouacers the edge of software produc-

tivity, the area with which this paper is concerned. Here

the project manager is concerned »ith meeting prescribed

milestones within budget. The products at this level are

ths various "deliverables", such as functional specifica-

tions, conceptual designs, program dssign, test plans, etc.,

that are required in an effectively managed project with

milestone requirements. These are the products one must

measure against their respective costs.

13

At the Una level itself there are two groups, project

teams and the individuals who make up the teams. The team

must be measured against its ability to deliver integrated

software products. The individuals must be measured against

their ability to deliver specific portions of the team

assignment. This is the point where programmer productivity

is discussed by most researchers. A special note is

required at this point. While one usually assumes that the

delivered products are of a specific quality, this seems to

be missed quite often when discussing programmer products.

The idea of quality in the product must always be consid-

ered. A person who can deliver five programs in one day

that are incorrect or do not provids consistent results is

not nearly as productive as one who delivers one product

every five days but which is correct and easily maintained.

Very few productivity measures take quality into

consideration, as will be shown later.

After realizing the various products made by different

levels in the organization, one must then consider who is

viewing these measures, management or labor. The views and

concerns of each are usually quite different unless there

has been a considerable amount of education on each side.

Management must understand there is an overhead expense

to developing, collecting and analyzing productivity

measures which must be -justified. Intuitively, one must

have a set cf measures before one ran determine constant,

"normal" or changing productivity. Mso management needs to

know how it intends to use these measures. The IEEE

[Raf. 8, p. 3 41] sees four major uses for productivity

measures: 1) motivation; 2) understanding; 3| evaluation;

ani 4) management.

Productivity measures can be used for motivational

purposes in three ways which provide tangible benefit.

First, researchers [Ref. 9,] have shown that by paying

n

attention to a person or group, performance levels of that

person or group will improve or change to what the observee

perceives as expected performance. This is known as the

Bawthome Effect. When managers take the time to do produc-

tivity studies the Hawthorne Effect may occur, albeit

teiporarily. Second is the ability to focus attention on

desired behaviors, events and objects or products. The

measures selected will place relative importance on the

araas being measured. ? or instates, if a series of

measures are selected which include speed of production and

maintainability the percaived relation between them by tha

programmer will determina which maasure they emphasize.

That perception of relative importance can have a profound

effect en the final product. If programmers see speed being

rewarded or emphasized aore than maintainability, the

manager should expect to see programs produced rapidly but

which are hard to understand and have little documentation.

If the reverse is perceived, then the manager should expect

tc see longer programming timas with much easier to under-

stand and better documented code. The third motivating

factor occurs through feaiback of rasults. The effective

feedback of productivity aeasures ran lead to changes in

performance in several ways. Quita often performance will

improve through the personal prida in accomplishment or

competition with pc ers. Also if a corresponding and

effective rawards and panalty system, eithsr formal or

informal, exists, per foe mar.ee normally will follow tha

system correspondingly.

Second, productivity measursmants help managers to

understand the factors unlarlying productivity. Measurement

is fundamental to scienca in that it forces managers and

researchers to conceptualize the ar = a under study. Using

various concepts will determine which measuras to use as

managers continue to try to model tia environment in which

15

they operate. Failure to develop a model will hinder

managers in improving performance and will keep software

development an art instead of a 'science.

Third, productivity measures help managers evaluate

performance because they quantify performance. It is easier

to evaluate performance over time within a single group or

organization because the aeasures remain constant. It is

also very important to track performance so that proper

feedback to personnel can be provided. It is also important

to evaluate between groups to see how one stands against, an

industry average. This has proven to be particularly diffi-

cult for software developers. Fe* groups use the same

measures. Those that use similar sounding measures often

have significantly different definitions for the individual

parts of the measure. LD" , which will be discussed later,

is a most common area of disagreement. Nevertheless, it is

important for each organization to establish a baseline and

to build a database of information. This information can

than be used for measuring the evolution of methodologies

and technologies used in software development.

Fourth, productivity measurement imposes a managerial

discipline. Normally managers are concerned with tracking

progress against, a scheduLe and budget. The consistent use

and taking of measurements can be extremely helpful in

making projections of progress against schedules and

budgets. The manager must remember that a productivity

measure is only a snapshot. It must be analyzed in relation

to its environment. In particular, managers must realize

the difference in the learning curves of various projects.

A "first-of- its-kind" project will have a much different

learning curve than a simple modification to a generic

project. The productivity rates will normally change

proportionally to the learning curve.

15

The manager's need for measures and his goals can differ

significantly frcm those of the workforce. Management often

wants to use the measures to identify exceptional perform-

mers or those who need adled training.

The workforce, however, may view the measures as a way

to generate either more products from the same work effort

or to generate the same number of products from a reduced

workforce. When the workforce sees the second side there

can be severe implications, particularly if they are

organized.

The workforce will rapidly wonier what taeir benefits

will be from all this new attention. Will the measures lead

tc more money for the same hours, the same money for less

hours for the good pecformmers ani/or lost jobs for the

poorer ones? In an effort at job preservation, productivity

may fall or stagnate at a predetermined level. This

researcher has seen deliberate productivity stagnation by

bricklayers, both in the housing and steel industries, and

by electricians working for a telephone company, all at well

below reasonable levels of capability. For one to think

that programmers and their industry would not tend to act in

a similar fashion is to approach this area with tunnel

vision. This may become a primary concern for FMSO where

soae of their government employees lold specific 3S ratings

and incomes based on the number of personnel they manage.

Conmand level management aust take care in the introduction

cf -he productivity metrics so that personnel in these 3S

ratings do not feel that their jobs or ratings are in

jeopardy if there is significant increase in productivity

which leads to a reduction in force (RIF)

.

17

III. WHAJ? IS THE PR3DUCT?

This researcher has determined that the predominant

measure of programmer productivity is the quantity of lines

of code written. This leids to several interesting conclu-

sions. First, the programmer only writes deliverable code.

Second, the programmer is the single dominant entity in

software development. Aid third, there are no other rele-

vant products or by-products in i software development

project. Anyone who has the opportunity to study or to

work in the software development arsna realizes the fallacy

of these conclusions. Programmers do considerably more than

write deliverable code. There are many other people

involved, each adding important contributions to the

project. There are several equally important products.

Frcm the previous chapter it was noted that there are

many levels of an organization whose productivity should be

measured. These involved in software development realize

that various levels of tie organization make contributions

to the various products of each project. This chapter will

look at the different products that this researcher feels

are relevant to the measure of software development produc-

tivity. This discussiDi will begin with middle level

management and work towards the individual. As we progress

down the organization the product will become easier to

grasp. The span of management control and resource respon-

sioilities will decrease. Therefore, one must remember to

ensure the product and the level of the organization match.

All too often people are evaluated on their ability to

produce a product which they were :iot assigned to produce

nor had any role in producing.

13

Unfortunately the reader will find in this section

several terms that have multiple mailings. This is inesca-

pable because there has been no aroepted set of standard

definitions within the software development industry.

A. PROJECTS AS PRODUCTS

The "contracted projeot", genericaliy, is a software

development tasking for which an organization contracts

another to produce. It nay consist of a number of sub-

projects or programs. An example is the development of an

operating system which iaoludes a jsb scheduler, process

scheduler and file manager, Figure 3.1 shows the various

i

contracted project assigned project

milestones (1) management/support (1)

design specifications functional specifications

lines of code modules

function (user) function (computer)

test code documentation

(1) not deliverable products

Figure 3.1 Software Development Products.

component products of a project. The project, an operating

system, must integrate each of thsse various parts to be

complete. Therefore, tae guestion of productivity here is

whether or not the project can be ieLivered on budget and on

schedule.

19

If the contracted project is large, as in the operating

system example, it will be broken down into several smaller

projects, which I call "assigned projects" since there is

little choice as to who will manage them once the contracted

project is accepted. The assigned projects will be given to

several project managers who will report to the central

contracted project manager. The role of each of these

project managers is to deliver a fully complete integrated

operating product.

The guestion at this point is, "Are these good items by

which to measure productivity?". !fes, they are, for several

reasons. First, for this level of ma nagement they are the

only products that are produced. Second, the reason for the

manager to hold the particular job of project manager is for

his/her to deliver a projeot on time, within, budget and to

the satisfaction of the customer so that the organization

may make its profit. What about the difference in languages

used or the sizes of various projects? These questions need

to take their rightful plaoe in the lata base of information

of the ccrpcration. Eaca productivity measure has a set of

parameters within which it can only be used. There is a

definite need to know how capable a project manager is at:

1) developing any project; 2) using i specific language; 3)

developing various sized projects; !*) developing machine

dependent projects; 5> developing first-of -its-kind

projects; or 6) modifying a generic project.

Each of these parameters gives added insight to a

project manager's productivity rating. The first lets one

know hew productive he/she is relative to all the other

project managers regardless of projsct specifics. Each of

the other measures provide additional information on the

relative productivity of a project manager within the diffe-

rent parameters. dse of all of th=ss productivity ratings

by the next higher level of management may improve both

2D

levels of managements producti/ity provided project

managers are well matched to projects where their

productivity is highest.

B. HILESTOHES A HD MANA3EME NT/SOPPDEtr

At this point it may be advantageous to discuss a

management tool that many may consider to be or confuse

with, a product. A "milestone" is a point in the life of a

development project when a deliverable product, as listed in

Figure 3.1 , should be oouoleted. Many would think that the

ability to meet project milestones shows great productivity.

This is not true. For if it were true, first the milestone

must, in fact, mean the production of a deliverable item.

Second, the deliverable item must be something of value to

the project. If the deliverable is, in fact, of significant

value to the project then the production of that item is the

basis fcr one's measure and not the meeting of a milestone.

The meeting of the milestone shows only that the project is

proceeding as planned. Phe milestoie has no other inherent

value. That is, one does not deliver a milestone as one

would a program. The milestone is only another management

tool just as is a productivity measure.

Like milestones, Management/Support is not a product but

a management tool. However, the type, quality and quantity

of the support must be considered very carefully.

Management/support exacts a price in that it is an overhead

expense. Its value is not as a product but as a tool.

nearly all presentations discussing productivity refer to

the management/support tools. This is where the vendors and

consultants make a great deal of noney. They speak of

productivity improvement and the aids that provide it.

21

There are two parts to this concept, management tools

and support tools. The management side deals with systems

that help predict costs and time schedules and those that

track the progress against the predictions and plans. At

FMSO, this function is under the auspices of the Management

Department, Code 92 [Ref. 10] where PAC-II is used to track

and DOD MICRO and SLIM are used to estimate software costs

and time schedules. The value of this support can be very

subjective. Often the value of tha management aid is that

it gives the manager much more confidence in his/her deci-

sions. The effect of the use of these kinds of tools may

also be seen on the ledger. If the systems help management,

all else being equal, one would expect to see fewer cost

overruns and better personnel management.

The support side has a miriad of tools than predict

sure-fire ways to improve productivity dramatically. These

tools include various design procedures (i.e. structured,

top-down, modular design), on-line programming and provision

for each programmer to have his/her own CRT terminal to

mention a few. T.C. Jones [Ref. 11] discusses more of these

tools and their respective limitations.

The fact that management/support is not a product does

not minimize its importance. On the contrary, it is vital

to effective software development. But the manager must

realize that the addition of each piece of management/

support costs money for which accounting must be made.

Although, there are many management/support systems which

may improve productivity, the indiscriminate implementation

of their use will not necessarily lead to productivity

improvements. The use aid expansion of management/support

is an area worthy of further study.

22

C. DESIGN AND FUNCTIONAL SPECIFICATIONS

Design specifications are usually thought of as a

product cf the contracting organization. They are used as

tha basis from which to make a contractual bid and to writs

tha functional specifications. Howe/er, the design specifi-

cations, as delivered, oftan must be rewritten by tha

contractor in close conjunction with the contracting organi-

zation so that they are explicit anough to properly writa

tha functional specifications.

Both Keider [Bef. 12] and Howdea [Hef . 13] discuss tha

need for well thought out and well written design specifica-

tions. Keider s article, "Why Projects Fail", shows how

poorly planned projects waste money and resources. Howden's

article, "Life-Cycle Software Validation", discusses tha

nead for project design spa cificatiois to meet five proper-

tias. First, the spacif ications must ba consistent

internally as well as in any relatad documents or other

portions of the project. Second, the specifications must ba

complete. Thay must ba axamined for missing or incomplete

inf or ma-ion reguirements and to ensure data properties ara

included. Third, tha s? ecif icatiDP.s should only include

neoessary items without redundancy (not to be confused with

hardware redundancy to eisure reliability). Fourth, the

system must be feasible with existing technology and hard-

ware. And fifth, the specifications must use correct math

formulas and decision tables.

The reader should racognize that the validation of

design specifications ar.i functional specifications is a

ncntriviai task. The systems analysts who validate the

design specifications and who writa and validate the func-

tional specifications muse ba held accountable for their

resource use in the production of these products. The

specifications need to be examined oarefully, as discussed

23

above, especially when one considers that approximately

forty percent of a projects resources are used in the design

phase [Ref. 37]. Poor quality here is very difficult and

costly to try to overcome later in the software development

cycle.

D. LINES OF CODE AS A PRODUCT

The line-of-code (LOC) is, by far, the predominant

measure used throughout industry to iiscuss program size and

productivity ratings foe all levels af software development.

Interestingly, though the entire industry uses LOC as a

measure cf product definition, few agree as to what a LOC

is. One of the first questions as<ed is, "Do you mean a

line of object cede or source code?". The industry has had

scie success in distinguishing between them but not in

choosing one or the other as a universal measure. Source

coie is that written by the programner while object code is

the compiled code stored in nemory. Source code is more

often used to describe programmer productivity than object

coie which is usually used to define the quantity of

computer memory reguirei to stara the program code

[Ref. 14].

Assuming one has settled on source code as a part of the

measure, what determines a line of code? SDme have said

each line or statement written by the programmer regardless

of length. Others try to force the line to have eighty

characters. Still others try to define it by statement

punctua-ion characters by language (i.e. periods in COBOL or

semicolons in PASCAL)

.

If this weren't bad enough, the next question is,

"Which of the lines are 'countable 1 ?". That is, some want

to differentiate between executable statements, data decla-

rations, comments, ncndeliverable debugging or testing aids.

2'4

etc. Use of LOC each of these areas must be explicitly

defined because studies have shown line count variations of

more than two-to-one on the same program [Ref • 15].

After the LOC is well defined and published, one must

watch carefully because, just as the measure helps manage-

ment to rate personnel, so does it hslp personnel to promote

themselves, often by manipulating the rules in their favor.

Here are several examples. One company settled on every

line written regardless of length. After some examination

of several programs, lines were found not to be complete

statements nor eighty characters in length, thus padding the

trie productvity levels. Another may decide to use eighty

characters as the defined line. In this case it would not

be unusual to find variables with extremely long names or

use of the "blank" character to fill up lines and thus pad

the productivity rating. Paradoxically, the programmers may

be forced to have large numbers of blank characters if

management reguires the use of structured programming tech-

niques. Another problem is that programmers may fight the

use of higher level languages so they may program in a

language in which they are comfortable and which requires

more lines to accomplish the same task. Jones [Ref. 15 #

p.»1-43] discusses the LOC measure more extensively than

presented here.

Since the measure is so difficult to define and may lead

to unacceptable programaiag practices, as stated above, or

caise paradoxical conclusions, as iiscusssd in the following

chapter, this researcher feels LOC is a poor product

measure. However, this ioes not mean to say that there is

no use for LOC as a product measure. In fact it is the only

measure available when one is performing maintenance on

programs which entails changing individual lines in a

program. Therfore, we must have a definition for a LOC.

25

There are many different languages in which one can

program. Since each has its own rules of construction the

definition of a LOC will necessarily be different for each

language. This researcher prefers to view a line of code in

tha context of a complete sentence or phrase of spoken

language. Each programming language has a defined equiva-

lent of a complete statement or phrase. Just as Hemingway

and Faulkner had different styles of conveying information,

so will programmers. This is not a detriment to programming

any more than it is to writing. Programmers will settle

into standard line lengths with which each is comfortable.

As long as management is satisfied that the style fits well

into the structure of the language then there should be no

problem. This does require management to supervise and to

train these that are not consistent in their own programming

or are far from the "avenge" line length of the rest of the

programmers.

The countable lines should be those that are vital to

the program quality and specific language. The lines that

are niceties but which aid in the readability of programs

have geed reason to be in programs. They should be counted

but not with full credit. The comnent line is an example.

It is necessary for readability bit a one hundred line

program does not need in additional hundred lines of

comments. Contrarty to others, tils researcher believes

soae credit should be given for comment lines. However, to

keep verbosity out of programs due to comment lines and to

be consistent with the creiit given for reused code

[Hef. 16], they should only count as twenty percent and then

should be a full eighty characters long. Lines that are

executable or data declarations ani the like should be

counted fully as one line.

25

If LOC is used as a measure for program length, it

should be measured as a block of L3C, haing at least one

hundred lines and not mire than one thousand lines per

block. There are two reasons to do this. First, each block

of LOC can have a time v alue association. This allows

developers to speak in tarns of time per block of code.

This is valuable when trying to estimate the time required

to develop a program estimated to be some number of blocks

of code long. Second, cole must have an intrinsic quality.

It makes little ssnse to liscuss one tested, debugged and

documented LOC. But it ioes make ssnse to discuss a block

of code with the same qualitias. This tends to force the

cole to have some minimum level of quality. The quality

requirement takes into consideration the time spent by the

programmer in writing non-ielivered test code and debugging

aids and in correcting logic errors. When LOC are reused

tha count value should be a percentage of one original LOC.

Basiii and Freberger [Bef. 16] use twenty percent in their

research. This researcher recommenis starting with twenty

percent and then adjusting it according to the percentage of

time required to locate reusable cole instead of developing

original code.

E. MODULE AS PRODUCTS

A module is a single, intellectually managable portion

of a program which is separately conpilable but which must

have connections to other modules. Its size is variable but

it contains only one complete responsibility assignment of a

program. It has only one antry point ind one exit point and

conforms to the permitted logic structures of structured

programming. The responsibility assignments are determined

during the design phasa before any work on individual

modules is begun. One of the key araas of modular design is

27

tha selection of module contents based on the probability of

change during the maintenance phase. In other words, assign

those portions of programs/projects that are likely to

change due to hardware or technology to their own respective

modules. The advantage gained by this bit of overhead is

found in the cost avoidance which foLlows during the mainte-

nance stage, where up to seventy percent of a projects
costs lie.

There is a paradox concerning maintenance and well

written code. If one measures productivity during the

maintenance phase by cost per defect, a popular method,

he/she will find that very poorly written code has a lower

cost per defect than well written code. This occurs because

poorly written code has many errors which programmers must

spend much time correcting. They, therefore, become very

familiar with the program. The initial costs of relearning

the program logic are spread over many errors in poorly

written cede, and over very few errors in well written code.

However, the total cost Df maintaining well written code is

usually much lower. If one were to take the same well

written modular code and compare it to the same well written

non-modular code one should find: 1) fewer logic errors

because of the extensive analysis during the design phase;

2) it's easier to locate errors since they can often be

traced to one module or at least to a branch of the program;

3) it's easier to relearn the logic because of the need to

only learn one or a few modules instead of the entire

program. If any or all of these points are realized, FMSO

could save a great deal in resources and improve customer

satisfaction. Since FSSD presently must maintain over 9^00

programs and respond to :>ver 3203 program trouble reports

(PTP.) annually, any reduction in the cost, in time or money,

on a per item basis could lead to significant savings and

higher productivity ratings fsr program maintenance

personnel.

23

The use of modular programming allows two other areas to

be explored. The first is Parnas* [Ref. 17] idea of program

families. The idea is to look at similarities in programs

before looking at thsir differences and write generic

programs based on the similarities. Then one adds the

modules that will make the programs individualistic. In

this way programmers can reuse existing code which is well

tested and with which programmers are thoroughly familiar.

This helps to reduce initial project development time and

costs and to reduce maintenance costs.

The second area is that which Zoll [Ref. 13 , p. 51]

refers to as "metaprogramming". This is the use of data

base libraries of modular cods to build complete programs.

The code is generic and the metaprogrammer merely researchs

*he data base and selects those modules which will meet the

program logic. In this way progranmers write much less

original code. Lanergan and Poynton [Ref. 19] report that

at Raytheon Company some ns w applications software have been

developed forty times faster than by using traditional

development methods. Reised modules have been averaging

between forty and sixty percent of the total LOC on major

projects. The probability of inducing logic errors is

reduced significantly and the probability of textual errors

is also reduced due to tha reduced amount of original code

required. Kendall and Lamb [Ref. 2D], in their research at

IBS, have reported data which shows that metaprogramming

from a data base of modules should be seriously considered.

Their study showed that =ighty percent of the applications

programming effort goes into production of programs whose

us=d life is less than eighteen months. Therefore, any

reduction in the effort to develop these programs and any

reduction in the maintenance effort of these programs will

provide a factor of four increase in the savings to be

applied to the maintenance of the twenty percent portion of

the programs with a siginf icantly longer life cycle.

29

The added attraction of modular code is the idea of

completeness of the task. For a quality module to be deliv-

ered for integration it must be: 1| documented; 2) coded in

its entirety; 3) tested; and 4) debugged. These are much

more difficult tc attain with LOC as the product. In parti-

cular, it is very difficult to test a block of LOC since it

relies heavily on the remainder of the code. Therefore, it

can only be examined by inspection while modules can be

inspected and machine dabjgged to a near zero defect condi-

tion prior to integration. Although the documentation is

not. vital for module delivery, it can be and should be an

organizational requirement.

The idea of designing projects, especially large ones,

by dividing them into subprograms or modules is a very old

concept in programming. During the 1970's it became a topic

of high interest as a way to improve program reliability and

maintainablility . Boss at al [Ref. 21], Liskov [Ref. 22],

Crossman [Ref . 23], and Parnas * Ref . 24] [Ref. 17] wrota

formidable papers extolling the virtues of modular program-

ming. Yet there are many software development organizations

that do not understand taa term, ise or value of modular

programming. The Departmant of Dafsnse (DOD) appears to be

ona organization that does not fully understand the value of

modularization and reusiig code. lunson [Ref. 25] points

this out in his short pap = r on reducing software costs by

reusing code. Elshoff [Ref. 26] observed this problem at

the General Motors Research Lab wi = re modularization not

only appeared foreign to analysts and programaars but was

vi=wed as detrimental to the software life cycle. The

nnf amiliarity with modularity is also present at the US

Navy's Fleet Numerical and Dceanographic Center in some

analysts and programmers. While this does not appear to be

a problem at FMSO at the presant, internal training may be

required because of turnovar of software development

personnel.

30

This section concerns quality modules. These are

modules that are coded in their entirety, tested, debugged,

and documented. Each organization will have to set up the

requirements for a countable modula. This researcher recom-

mends these attributes. They ansure attainment of the

organization's minimum quality standards and take into

consideration the programmer's time in debugging and testing

tha module. When reused aodulas are a part of the delivered

product they should be counted as a percentage of one

module. Basili [Ref . 15] used twenty percent in his

research. This is a goDd starting point. But if the

organization finds that this is not an accurate percentage

of the time required to develop original modules then the

percentage should be adjusted accordingly.

F. USER FDNCTIOHS AS PRODJCTS

The previous section dealt with functions based on

program structure. This section deals with functions based

on user requirements. While modules may vary in length by

approximately one hundred lines of code, user functions can

vary up to several prograns . An exaaple of this is a single

entry accounting system. A company may want a system which

performs several functiois such as: ledger maintenance,

invoicing, file maintenance, weekly reporting, ate. Each of

these operations or functions, is a deliverable product to

tha customer as a part of the single entry accounting

package. The quality of the entire package is determined by

tha customer satisfaction with aach individual function.

Albrecht, [Ref. 27] of IBM Corporation, uses this measure as

the primary means of determining productivity ratings in the

Applications Development 5roup. He points out that one must

be careful when using this measure :> r any other measure by

keeoing the major project objectives in perspective: on

tine, within budget, and a satisfied customer.

31

The specific product aeasure is what Albrecht calls a

function value. The approach to determine the function
value is to count the number of external user inputs, inqui-

ries, outputs and master files that the project must develop

as a part of the user requirements. An external user input

is a communication from the user to the computer such as

data forms, terminal screens, keyboard transactions, optical

scanner forms and the like. These lo not include inputs

from tapes and data sets, which are considered as internal

and part of the file count. Each of these user functions is

weighted by a value designed to reflect that function's

value to the customer. Appendix I shows the details of

determining the function value and Appendix II shows the

details of determining the sizing and complexity of an

entire project using function value oomponents. Appendix II

uses the same external user inputs and some internal inputs

as components to compute the function points but also

provides for the the computation of a development time esti-

mation. It is important to note that Chrysler [Ref • 2]

showed in an unrelated and independent study that these

components were most significant in predicting development

tiae.

Albrecht' s function value concept has several advantages

over those measures previously mentioned. First, it is the

only measure that deals specifically and directly with user

satisfaction. The other neasurss virtually ignore the user

between the functional specification phase and the implemen-

tation phase. This method constantly works with the user.

Secondly, since its focus is on user requirenents and not

on counting lines or blocks of code or modules, it tends to

liait programmer gaming to improve his/her productivity

rating artificially. Third, the aeacure breaks the project

into user defined portions of importance. This focuses the

effort towards teamwork since it requires the development

32

group to work as a team toward the production of functions

to which the user has placed a wall defined importance.
Lastly, the method provides more opportunity for a smoother
evolution of change than the others. It focuses attention

on the cost of each fanot ion and the effects on cost of

mid-development changes. The constait attention to cost and

user involvement provides a better nechanism to control the

change process during development. It enables the planner

to design for changes that may occur during the life cycle

that may not be cost affective to include during the

development phase.

The function value concept has three disadvantages.

First, there may some question as to whether to call a

component an inquiry or an input. These ace not always

distinct items. If the weighting factors are different for

each this may significantly alter the final function value.

Second, users play a larg* part in determining the weighting

factors, as it should be. Users can be fickle, therefore,

it is often extremely difficult to get them to admit "truth-

fully" what they desire most. It is not so much that they

are hiding information but that they don't really know what

they want. Therefore, it requires talented interviewers and

designers to determine th= true desires of the users. The

third disadvantage is that this usasure is so good that

managers may tend to rely on it too heavily. This is not

the ultimate or universal measure but it is a good one. The

otier measures can give insights 02 products and produc-

tivity that this measure cin not. The function value is an

aggregate measure and must be used as such. As Stevens

[Ref. 28] of Performance Management Associates Inc. of

Scottsdale (Az.) points Dut, there is no universal measure

yet. We must use all the imperfect nsasures available in an

effort tc describe the programming activity.

33

G. TESTING, INTEGRATION, fcND I HPLEMENT ATION

One of the concerns of managers, whsn discussing

programmer productivity, is ho* to iicorporate non-delivered

code in the calculation of productivity. The non-delivered

code consists of test cods, debugging aids and incorrect

code. The incorrect cods is a function of ths programmer's

skill and is a penalty to nis/her productivity rating. Ths

test code and debugging aids are not mistakes. They are

ussd by skillsd programmscs to ensure coding guality and

correctness. There has been some concern that ths

programmer should have this code included with the delivered

cods for productivity calculations. This rsssarcher does

not concur that the test code and dsbugging aids should be

included. Ths programmsc 's job is to deliver code that

meats the specifications. Ths only way to ensure the cods

actually meets those specifications is to perform some type

of test. Test code and debugging aids are tools of the

programmers just as milestones and management/support are

tools fcr others in ths software isvslcpment arena. Thsy

ars a necessary overhead 4 hich programmers muse employ if

thsy are to deliver the quality products discussed

pra viously.

The integration, tasting and implementation phase of

software development utilizes approximately forty percent of

ths project's resources [3sf. 37 ,p.18]. Intuitively, ons

would think that an area which uses so much of the resources

would be a prime placs to do some productivity research.

This, unfortunately, is not the case. One of the prims

reasons has been the inability of the industry to determine

ths role these activitiss play. Specifically, there is a

qusstion as to whether testing is a part of devslopment or a

part of quality assurance. If it is part of guality assu-

rance then it is an cverhsad and not a productivity concern.

3
'4

If it is a part of development then the product is tested

and acceptable code. But what deternines how productive the

testing is? The time expanded in tasting does not help to

determine the productivity of testing because the time used

in testing is a function of the -cast plan and the number of

defects found. Defects found does help to determine produc-

tivity. It shows either poor design, poor programming, poor

quality assurance practices or any combination thereof.

Integration is left with the same type of problems.

This activity takes project portions, modules, LOC, or

programs, and brings then together to form a cohesive and

integrated product. But if there are major difficulties

encountered are they the the fault of the integrators?

Probably not. The fault probably li*s with the designers or

the programmers.

The manager must ba aware of ths problems that develop

during this phase and keep records of them. Though there

were no conclusive reports found o.i how to deal with the

information, the consensus from tha literature is that it

must kept in a data base for later study and consideration.

Tha science of software davelopment has net progressed far

enough to completely handla tha test, integration and imple-

mentation problem. Most researchers are of tha belief that

if we get control of the development process in a scientific

way these problem areas may disappaar.

H. DOCOHENTATION

The primary belief in the indusrty and particularly in

DOD is that software development projacts have two separate

products: program code and program documentation. This is

an extremely s hcrt-sightad but understandable belief. As

long as software development is viewed as having two

products, this belief presents tha opportunity to discard

35

one. Since the program is what is wanted, all too often the

documentation is reducel in an attempt to reduce development
costs. The view that there are two products and the prac-

tise of reducing the documentation thrive on ths belief that

software development and software maintenance are not

related. This is not true. The documentation is required

to learn the program logic and coding structure. A software

project that was poorly designed and poorly or not

documented is extremely difficult and much more costly to

maintain than one that was nail designed and well docu-

mented. Nearly every other industry (i.e. automobile,

electronics, machine tools, etc.) that produces a complex

product provides documentation on tie logic and design of

that product so that maintenance personnel can provide

quality and cost effective maintenance. There is no reason

to believe that the software development industry should be

any different.

This researcher beiie/es that documentation is not a

separate product but an integral pact of all well developed

software projects. This chapter consistently discussed

fully coded, well documented quality software. It should be

intuitively obvious that a program that does not operate

properly is of little or ao value. And that one that oper-

ates properly but is difficult to mderstand and maintain

because cf poor documentation is of nuch less value than one

with superior documentation. Thus, the documentation has no

specific measure of length only one of quality. It is a

problem for the developers and quality assurance experts to

ensure that the documentac ion is provided and adequate in

describing the program logic and coding structure of the

pro ject.

35

17. THE MEASURES

During the research for this piper it was noted that

thare is a great deal of misunderstanding both in the liter-

ature and in the industry about programming and software

development productivity. The misuiderst anding lies in the

area that, when questioned about the product that is

produced, one will receive quizzical looks or long spells of

silence. People immediately want to jump to discussions on

complexity, language, tools or the development environment.

These have little to do with calculating productivity.

Thair roles are as parameters within which one must analyze

the specific productivity rating. This is not to belittle

tha importance of these areas. It is simply a matter of

organizing one's thoughts. One can not intelligently speak

of improving productivity intil one first has a quantitative

measure and secondly a description of the environment. Too

often people in the industry look at the environment not

only first but exclusively. Without a product definition

and the measure, the environment cannot be understood.

Productivity has two components: outputs and inputs.

Tha outputs, loosely defined, are the products previously

discussed: projects, programs, functions points, modules,

and LOC. They are dependant on tha corporate hierarchical

level and the philosophy jsed for software development. The

inputs vary considerably depending ipon which productivity

measure one is interests!. The most common input used is

the person-month, 160-175 hours. This can ba broken down

into its various parts by programmers, management/support,

systems analysts, and program analysts. 3ut there are other

inputs that may be worth considering such as CPU time or

terminal connect time. Though, thase are rarely if ever,

considered.

37

A. LOC PER PROGRAMMER-MONTH

The most common measure used for assessing productivity

throughout the industry is LOC per programmer-month. Though

a /ery popular measure, it is not very good. Since it is

based on LOC it is subject to the Line counting variations

mentioned in the previous chapter. This variation can be

United, to a certain aitent, by setting organizational

standards as rsccmmendei aarliar. This would parmit consis-

tency in the organizatioi bat not across the industry.

Recall, one of the reasons for measuring is to maka compari-

sons across organizational lines. As long as there ara

variations in the definitions of conponents no intelligent

comparisons can be made.

LOC per programmer- mo a th is insffactive for noncoding

tasks* The tendency when computing this measure is to usa

programmer-month as tha total development time which

inoiudes these noncoding tasks of iesign, documentation,

testing and management/support. Since no coding is going on

during these stages it mafcss little sense to include them in

the coding effort. Therefore, that would imply that this

measure should be used only for the coding phase. Of

coarse, that fccuses attantion on the coding task exclu-

sively, which is a minimal portion of the software

development effort.

Finally, this measure tends to penalize high-order

language (HOL) programs in favor d f programs written in

Assembler language. Jones [Ref. 29, p. 21] provided the

example shown in Figure I*. 1 . This is an example of the

same program written in two different laguages. Two of the

purposes of using HOL ara to cut costs and improve produc-

ti/ity. But the example shows the paradox of this measure.

It appears that Assembler language is more productive than

the HOL even though the HDL program took one nonth less to

33

, ^ _ — ________

Activity Assembler
Language

_.

HOL

Design
Coding
Testing
Documentation
Hgmt/Support

^ weeks
'4

%
2
2

4 weeks
2
2
2
2

Tctal Effort

Lines of code

LOC per prog-ison

. _. _ __

15 weeks
(4 months)

2300

5 00

12 weeks
(3 months)

500

167

Figure 4.1 Assembler Language vs HOL.

produce. Notice also that Jones used the term "programmer-

month" -co mean the entire program development time, a common

practice, as mentioned earlier. The actual programming

times were one month and one-half month for Assembler

language and HOL r respectively. Even if this time frame is

used, though, the Assembler language at 2000 LOC per

programmer-month appears to be twice as productive as the

HOL at 1000 LOC per programmer-month. This points out the

problem of not being consistent about terms. Jones uses

programmer-month to mean the entire development time which

yielded an average productivity figure which included a

period when no ceding was being done at all. Using the term

strictly and comparing it to Jones' usage leaves us with a

four tc one difference in productivity for Assembler

language and a six to one difference in productivity for the

HCL.

39

B. MODULES PER MONTH

This particular measure was presented in a paper by

Crossman [Ref. 23], Surprisingly, tiis researcher cculd not

find any other references that have attempted to duplicate

his findings. Yet he pointed to several advantages which

this measure and its methodology of program development

support.

Modular design programming tands to minimize the

complexity of projects. minimizing the complexity parameter

allows the manager to reduce the number of variables he must

consider when making productivity conparisons. The defini-

tion of a module appears to be mors consistent throughout

industry than LOC which gives it a potentially much better

coiparative capability between organizations, provided the

other organizations use this measure. The use of modules as

a product provides a consistency throughout the development

cycle. It includes the design, coding, testing, docu-

menting, and management/support phases. Yet it can also ba

broken down into its individual component efforts to deter-

mine which effort has the greatest impact on development

time and the impact of a ach moduli on the project as a

whole.

C. FUNCTION POINT DELIVERED PER HOBS HOUR

Albrecht [Ref. 27] discussed tha effects chis approach

has on showing the relative productivities between

languages, project size and various programming technolo-

gies. The method focusas on the external attributes of a

program and the work-hours contributed by both IBM and

customer personnel assigned to work on the project. It

covers all phases of the project. The goal of this method

of measurement i £ to state development costs in terms of tha

work-hours used to design, program and test the applications

40

project. Although thera is not enough data available

prasently to give conclusive results, the report does indi-

cate the capability to show the relative productivities of

different languages and development technologies. This is a

major advantage that is not possible with LOC and has not

yet been explored using modules.

D. SELECTED IHDUSTRY METHODS FOR MEASURING PRODUCTIVITY

The preceding sections of this chapter discussed various

methods used in research to study programmer productivity.

Each method mentioned usas a ratio of outputs (project,

program, specifications, nodules, LO: or function value) to

inputs (person-months, pro gram mer- m:> nths, or work-hours).

Previous sections provided recommended definitions for

selected output and input components. This section presents

measures used by several prominant corporations that develop

software.

1. IBM

Measurement of programs is still a fairly subjective
process. 3e can measura size- basad on 'lines or code 1

There
is a veiled invitation aere to find something better.
[Ref. 30 ,p. 372]

This is the philosophy used to approach the

measuring of programming activities at the Santa Teresa

Laboratory of IBM. The "something better" that IBM has been

trying to refine for the Last three to four years has been

the software science metrics developed by Halstead

[Ref. 31]. Figure 4.2 slows the major elements in use by

IBM [Ref. 32] [Ref. 30]. The philosophy for using software

41

Operands = values that are change! or used as a
reference far change (constants, variables

Operators = elei
(op<
ar:
IF

Dents that operate on or with operands
eration codes, delimiters, punctuation,
Lthaetis symbols, branches (DO WHILE,
THEN, IF THEN ELSE))

i*l I = number of unique operators used

'lp = number of unique operands used

f\| = number of times che operators are used

[\L = number of times the operands are used

Vocabulary {T))
= the Sim of unique operands and

operators used in the program.
It is a measure of the repertoire
of elements a programmer uses to
impleuent a program.

V -v,*v
2

Length (|\|) = the sum of the operator usage and the
operand usage. It is a measure of
prograa size.

1 . 1, ,
2

Difficulty (0)

D

i

= a measure of the difficulty of
writina code and, intuitively, a
measure of ease of reading.

V, N2
- T *

7f2
-

Figure 4.2 Halstead Blement Relationships.

science metrics is built on the following beliefs. First,

in any given language, one type of program is no harder to

cede than another. The experience at Santa Teresa labora-

tory over the last five years is that the only things that

affect productivity are the language and the tools used.

They have found that HOL is about twice as productive as

Assembler language. Second, aside from language, the

U2

development -cools are what affects programmer productivity.

To this end, IBM has consistently added to the "workbench"

of their programmers^ They have provided on-line program-

ming capabilities, given each programmer his/her own

terminal in his/her office, profiled a dedicated program

development computer aad various programming aids such as

Script. Third, the definition of operators and operands is

consistent across language barriers. This gives software

science metrics a significant advantage over other measures.

Additionally, IBM research has shown that the size metrics

used by Halstead are as accurate as LOC for measuring

program size.

Since programming productivity is believed to be

constant for all programmers, given the same environment,

IBM has looked primarily at the difficulty metric.

Difficulty is defined as a metric that expresses the diffi-

culty of writing code. It takes into consideration decision

nodes, the repertoire of operators used and how concise the

usage cf the variables is. The measure, then, also appears

to be one for ease of reading. It loss not tell how diffi-

cult the program must be. It only tells how difficult the

programmer made the program. High difficulty can come from

poor programming skills, poor program structure, inexperi-

ence with the language or the complexity of the algorithm.

The value of this metric is three fold. It tends to indi-

cate error-proneness much earlier in the development cycle

than traditional methods. Intuitively, the n:re difficult

the program, the more error-prone it is. The measure can

only be taken after coding has been completed but it can be

calculated immediately fsLloving the first clean compile.

There is no need to wait for testing. Secondly, it points

out these programs which need rework due to high difficulty

values. Third, it points out programmers who consistently

have high difficulty values. This enables the manager to

43

ensure that the programmer receives added training in the

technigues available to reduce program difficulty. IBM has

fojnd that the difficulty measure tinds to range frcm three

to eight. When ever they see thit a difficulty measure

exceeds five, they call the programmer in to have him/her

recode the program to reduce the difficulty measure to five

or less. If the programmer consistently delivers code with

high difficulty measures he/she is provided aided training

in technigues which can lower the program difficulty.

All this only gives meisures of the program not the

prodcuctivity of the programmer. For IBM to determine that

all programmers had the same productivity, they had to test.

The test, measure was and continues, on a minor basis, to be

L03 per person-year. L03 is defined as data declarations

and executable statments. The use of this measure, now, is

only to check for changes in productivity due to new tools

and for reasonable production rate ralative to the industry.

I3M recognizes the comparability problem of the LOC measure.

However, the IBM perceived industry average ranges between

800 and 2500 LOC per year, given the line counting varia-

tions. They continue to measure productivity using LOC per

man-year to ensure that IBS remains wihtin this range.

2. Amdahl

a. System So ft wars

Amdahl's approach to systems software develop-

ment is different from most of the industry. As a

manufacturer of IBM compatible hardware and software, their

approach is to use IBM software proiucts and modify them to

operate more efficiently on k mdahl hardware. This means

placing "hooks 1 ' into the IBM software to operate special

Amdahl procedures. Since their goal is develop more effi-

cient software, these hoots must be minimal in both length

44

and interference with the existing software and logic.

Amdahl places a much higher empaasis on quality than

quantity.

In this light, none of the previously discussed

measures apply. Amdahl uses a management by objectives

(M30) approach to measure performance. Their hiring prac-

tises aim -cowards acquiring those programmers who are

experienced, skilled and senior in the industry. The

programmers are organized into groups of two to three

assigned to one -earn leader. Each group has its own area of

responsibility fcr program development/modification. The

assignment of tasks and the time constraints are determined

by mutual agreement between the manager and team leader.

The schedules are recorded and eaoh programmer is evaluated

on his/her performance. The evaluation is discussed with

the respective programmer at the periodic performance

review. Since each group has specific areas of responsi-

bility and thos€ areas are limited, any trouble reports

received are easily assigned to -he group and/or individual

responsible. These are also included in the performance

review. This scenario does allow any specifio measure to

quantify programmer performance. However, the programming

section is a small organization, 53-75 programmers, so they

crack the type of modification against the time required and

the quality of the programming. Thiy do not use any parti-

cular measure outside of budget and schedule. [Ref . 33]

b. Applications Software

Amdahl's application program development is very

siailar to the systems software development in that they use

M30 as the predominant measure. They do use LOC per

programmer year to do some measuring but it has very little

significance to the operation. LOC is defined as all

programmer-original COBOL statments. No credit is given for

45

reused code, although, they admit some credit should be

given. This wculd appear to discourage reusing code but

rhair incentive, reward and penalty system provides the

necessary encouragement. How the system functions was not

specified. Management does require programmers to use data

dictionaries, and code libraries are kept in an on-line data

base. The primary measure used to aeasure performance is a

review of the programmer's schedule. The programmer submits

a schedule of task accon? lishment to the manager. The

manager reviews it to ensure it is realistic and then

compares the schedule to the task completion dates as the

programmer delivers the assigned tasks. Here, as in systems

development, the primary ingredient for measuring is

programmer and manager experience. * Ref . 34]

The measure used to evaluate maintenance

programming is built aroui d the naaber of trouble reports

received. Each programming group is responsible for mainte-

nance of its assigned software. Teaa leaders must emphasize

high quality in the software to avoid having to reschedule

proarammers onto maintenance from development. This does

not prevent errors but it does cut them down. The main

emphasis from the Applications Programming Manager is to

ensure as rapid a response time as possible on the trouble

reports. The required turnaround time for trouble reports,

presently, is not to exceed six montis. They use the turna-

round measure because it tends to indicate to the users that

the company is genuinely interested in the prcductivity of

software maintenance. It also gives the respective managers

an additional reason when requesting more resources.

Finally, it gives a business value to organized maintenance

because it forces the various managers to schedule resources

for program maintenance.

45

Amdahl uses program packages predominantly in

thair applications programing section. These packages coma

with their own documentation which allows Amdahl to take

take an approach significantly different from this research-

er's view point. Amiahl believes program code and

documentation to be separate and uaegual products. This

belief is made possible because they have programs that can

analyze code and tell the programmer the structure of the

code. therefore, they feel that program maintenance

without the documentation is nor as difficult one might

assume. However, documanation is sncouraged. The method

used is to reguest documentation ani to make it as easy to

provide as possible. To make the dDcumentation easier, it

is all written on-line using Script and a variety of user-

developed macros that provide some graphics to enhance the

prose. The documentation guality is now much higher and the

documentation is much easier for the programmers to deliver.

[Raf. 34]

3« Systems Development Co:_p_orati 3_n (SDC)

SDC's cost estimating procedures use LOC and pages

of documentation as fcha primary productivity inputs to

compute costs. They catagorize tha various types of LOC

(data definitions, executable statements, reused code, etc.)

to determine the subtask cost for each activity. The LOC

are weighted by an in- house conplexity measure which

includes parameters for program siz = , security, and reli-

ability. 2ach productivity measurs is computed relative to

tha type of program (real-time process control, interactive,

report generator, data basa control, etc.) that was

produced. Documentation is mesurai by pages produced per

day per type of program. Although they call documentation a

separate product, they consider all projects to be inte-

grated packages of both software code and documentation.

[Raf. 35]

47

I. TRW

TRW uses a weighted LOC per man-month method to

measure productivity. They reviewed Halstead^ metrics but

concluded, as did IBM, that sourca LOC is equivalent to the

size metrics developed from counting operators and operands*

They do concede that ths difficulty metric daserves mora

study but they have no resources ivialable at present to

conduct such a study. They have found that weighting the

LOC with an in house factor for conplexity and reliability

is sufficient. The LOC is defined as a delivered well docu-

mented and well engineered line equal to a card image. Tha

card image is an eighty character Una. Comment lines are

not included but all lines which hoLd "computing" informa-

tion are (e.g. job control language, edit links, format

statements, data declarations, executable statenents, etc.).

TRW defines a man-month, 15 2 hours, to include all personnel

hours directly chargeable to the project.

at present, TRW does not measure maintenance produc-

tivity. However, the interview with Dr. Boehm [Ref. 36],

recommenced the method discussed in his book Software

Engineering, Economics [Ref. 37]. This method equates the

annual maintenance effort to the aanial change traffic (ACT)

multiplied by the estimated development effort. ACT is the

friction of the software product's source instructions which

undergo change during a typical year, either through addi-

tion or modification.

TRW includes document a -ion in its definition of a

LOC. This corresponds with the philosophy of this

researcher. TRW does not treat software code and documenta-

tion as separate products but as integral parts of the

software project.

43

?. CONCLUSIONS AND RECOMMENDATIONS

This paper has attempted to point out the major areas

which must be explored in order to measure and discuss

programmer productivity or software development produc-

tivity. The manager Bust decile what level of the

organization he wishes to measure. He then must determine

what, specifically, the product is which that level is

making. Before proceeding any further, he should examine

the quality assurance procedures ana practices to ensure

that they are both in use and that they do establish and

check for a minimum quality standard. From here the manager

can select the various inputs which ie feels are relevant to

stady. The productivity rites he conputes need to be stored

in a data base so that they may be used as comparators

against time and other organizations. Finally, each measure

must be kept in the context of its environment. This condi-

tion provides two functions. First, it keeps the measure

meaningful. Second, by selectively ohanging one element of

tha environment at a time, the manager can determine cause

and effect relationships that can lsad to establishing the

optimum software development environnent .

The LOC measures are poor for software development and

lead to paradoxical conclusions in many instances.

Regaining with any measurs that uses LOC will tend to bind

tha organization to technologies requiring the development

of totally original code nn every project. This will tend

to prevent the use of metaprogramming and the davelopraent of

program families. Thess programning technologies show

significant promise to reduce development costs and improve

programming productivity dramatically.

49

Modular measures provide the opportunity to explore and

develop the meta programniag practice. They also have over-

heads that must be accepted as development personnel learn

the technology, the added effort required in the design

phase, particularly for "small" projects, and the possible

inefficient use of CPU tine due to aa increase in the number

of LOC. These are small overheads to pay if the development

time can be reduced by as nuch as Laaergan [Ref. 19] claims.

The measure can be used in conjunction with any other

measure to help define the programming activity better. It

may be especially usefal in conjunction with function

points.

In closing, it is apparent for the literature and the

discussions with the selected industry corporations that

there is no perfect and correct measure or method for

measuring programmer productivity. However, the vital point

to understand is that nearly all organizations do measure

programmer productivity ia som= fashion. Several organiza-

tions admit that their methods lack some possibly important

inputs cr parameters. However, each organization does

attempt to measure productivity so that each can gain some

understanding of the orgaa ization • s particular environment.

With an understanding of the environnent, each organization

and researcher is able to conceptualize the software devel-

opment process so that tie manager can make intelligent

assertions about how it is affected.

53

LIST DP REFERENCES

1. Lewis, Tim, "Missing Computer Software", Business
Seek, pp. 46-53, 1 September 1930.

2. Chrysler, Sari, "Some Basic Determinants of Computer
Programming Productivity". Z3i anications of the ACM,
vol. 21, pp. 471-483, 1978.

3. "A Rush of New ConDaniss to Mass-oroduce Software"
B£§i£^ss Week, pp. 5i-56, 1 September 1983.

4.

5.

Azuma, M. and HizuaD , Y. ^"srEPS: Integrated Software
Standards and its Productivity Impact", IEEE Computer
Soc:stv Conference Proceedings (COMPCDN H1TT~ ~ppT
El^^T FA TTTT517"" "
Wasserman, Anthony I. and Bslady, L.A., "Software
Engineering: The Timing Point", Computer, pp. 30-39,
September 1978.

6. "An Acuta Shortage d£ Fr3 grammars" Business Week, pp.
49, 1 September 1983.

7. Kiser, Barbara C. Stewart, "Software Management
Productivity - Uniers tanding the Software Development
Process", IEEE Concuter Society ^2Iif§^§si2i E^22^§.siH2§

8. Mursun, J.B. and Yeh, R.I. (co-chairman), "Report from
the Measurements Workshop of the IEEE Workshop on
Software Productivity", IEEE Computer Society
Conference Proceeiiajs Fill 193 7, pp. 339-377.

9. Simon, Julian L.,is" Basic Research Methods in Social
Science, pp. 287-291, 3i"na*oi~?5ase7 ITew~Y*ork~, ~N.777
TTT37

10. ?azur
f

P. or., interview on 33 September 1982, Fleet
Material Support Office, code 9212, Mechanicsburg,
Pa. , A7 430-2434.

11. Jones, T.C., "The Limits of Programming Productivity"
?I£ceedin£S of the Joint ScIAS E/GUIDE^IBM Amplication
^evelcgment Symposia J. ~ undateclT

~

12. Keider, Stephen P., "Why PrDjects Fail" Datamation,
pp. 53-55, December, 1974.

51

13. Howden, William E. - "Life-Cycle Software Validation",
Computer, pp. 71-78, February 1978.

14. Fox, Joseph M., Software and its Development, pp.
226-251 , Prentice-HarT7~5ngliw5D3"*CliIIs7"N. JT~~07632,
1980.

15. Jones, T.C. , "Measuring Programming Quality and
Productivity". IBM Systems Journal, vol. 17, no. 1,
pp. 39-63, 1978. fc

16. Basili, Victor R. and Frebergar, Karl, "Programming
Measurement and Estiaation in the Software Engineering
Laboratory" The Journal of Systems and Software, vol.
2, pp. 47-577

_
T98"T7

17. Parnas, D.L., "Designing Software for Ease of
Extension and Contraction", IEEE Transactions on
Software Engineering, pp. 226-2 3 57 HarcK7~T979T

18. Zoll, Peter F., "Measuring Programming Productivity"
Computer Performance Evaluation Users Group 16th
Bering* (TI5S'-^P=5a7=65r7~Ppr"59-52,"T9Ba.

19. Lanergan, Robert 3. and Poynton, Brian A.
f

"Reusable
Cede - The Application Development Technique of the
Future", Proceedings of the Joint SHARE^GUIDE/IBM
A££licatio ns~ T[ev§T3£ merit" S^mgosium, PP-~ ~T27rTl^7
CctoD*er~T97g.

20. Kendall, R .C. and Liab, E.C., "Management Perspectives
on Programs, Programing and Productivity", GUIDE 45,
Atlanta, G a. , Novembar, 1977.

21. Res
C. A
Gca

s, Douglas T. , Soodenough, John B. , and Irvine,
., "Software Engineering: Process, Principles and
Is", Computer, pp. 54-64, Siy, 1975.

22. Liskov, B.H., "A Design Methodology for Reliable
Software Systems"^ Proceedings, Fall Joint Computer
CcLl®^ii2® t PP- 6o-73, T9727"

23. Crcssman, Trevor D., "Taking tie Measure of Programmer
Productivity", Datamation, pp. 144-147, May 1979.

24. Parnas, D.L., "On the Criteria to be used in
DecomDosing Systems into Modules", Communicati.ons of
the ACM, pp. 220-225, March, 1979.

25. Munson, John B. , "Improving Software Engineering
Productivity", IEEE Zomput = r Society, Conference
Proceedings (COMPCQfT"81) 7~pd7"3T0 , September T9HT.

52

26. Elshoff, James L. , "A Review of Software Measurement
Studies at General Motors Research Laboratories".
Proceedings OS Army/IEEE Second Life Cycle Management
£2Jkl£rence7 pp. "172=1737 lugusE 197H7

27. Albrecht, Allan J. , "Measuring Application Development
Productivity", Proceedings of the Joint
SHARE/GOIDE/IBM Application Dev elopment S£mposium7 PP^
31-'977 October 19*79.

"

~ *"

28.

29.

Stevens, Barry, "Productivity: The First Step",
Software News, pp. 29-30, Marci 1, 1982.

Jones, Capers, Progjram 0.iality_ and Programmer
Productivity. TR 02.76T. IBM *orp7. General Products
BTvision 5b00 Cottle Road, San Jose, Ca. 93193,
January 28 ,1977.

30. Christensen, K., Pitsos, 3. P., Smith, C.P., "A
perspective on Software Science", IBM Systems Journal,
vol. 20, No. 4, pp. 372-387, 1981.

31. Halstead, M.H., Elements of Software Science, New
York, New York, 19777 "

32. Christensen, Ken, Interview, IBM Santa Teresa
Laboratory, 555 3ailey Avenue, P.O. Box 50020, San
Jose, Ca. 95150, 403- 463- 3 127, September, 1982.

33. Patrick, Rich, Aiiahl Corporation 1250 East Arguez
Avenue. P.O. 470, Sunnyvale, Ca. 94086, 408-746-8916,
September, 1982.

34. Berry, Mike, Amdahl Corporation, Sunnyvale, Ca.,
408-746-60 00, December, 1982. interview.

35. Wong, Carolyn, SDZ 25 00 Colorado Avenue, M.D. 32-61,
Santa Monica, Ca. 90406 213-820-4111, Interview,
December, 1992.

36. Boehm, 3arry. TEW-DS3 1 Spaoe Park, R2-1076, Redondo
Beach, Ca . 90278, 213-535-2184, Interview, December,
1982.

3*7. Bcehm. Barry Software Engineering. Economics,
Prentice- Hail, IncT7 5nglsw53a Cull's, New Jersey
07632, 1981.

53

BIBLIOGRAPHY

Albrecht, k.J., "Measuring Application Development
Productivity" , IEEE Computer Society Conference Proceedings
Fal l 1981., WashingTon"DTC7~pp.~23ZrZn -

3as;.li
f . V.R, and Freberger, B. ("Programming Measurement and

Estimation in the Software Engineering Laboratory" , Journal
of Systems and Software, vol. 2, February 1981. pp. 47-57

Basili, V.R. and Philips, Tsai-Iun, "Evaluating and
Comparing Software Metrios in th= Software Engineering
Laboratory", Performance Evaluation Review, vol. 10, Spring
193 1. pp. 9 5-705-

F

Byars, L. L. . "Solutions to Productivity Problems". Journal
2* Systems Management, vol. 33, January 1982. pp. 26-35

Chapin, N., "A Measure of Software Complexity". Proceedings
or the National Computer Conference 1 9 79 r pp. 995-TUU2" "*

~~

Chen, E.T. , "Program Complexity and Programmer
Productivity", IEEE Transactions of Software Engineers, vol.
SE-4, no. 3; ^97B7~ pp7"T37^T9!T a

Chrysler, S. "The Imoact of Program and Programmer
Characteristics en Program Size", AFIPS National Computer
Conference, 1973. pp. 531-587.

Curtis, E., Shepoard, S. P. , Bcrst, M. A. , Milliman, P., ani
Love, T., "Seme Distinctions 3etween Psychological and
Com outationai Complexity of Software", Proceedings, U.S.
Army IEEE Second Lire lycle Conference, ATIanta, ~Ga.
Xugust, 7973.~"pp7~766=T77.

"

March, 1979. pp. "95-100":

oeptemoer, T9"79 . "pp. 355=35

Fit zsimmor.s, A. and Love, T., "A Review and Evaluation of
Software Science", Commuting Surveys, vol. 10, no. 1, March,
1 97 3.

Gilb, T., Software Metrics, Winthrop Computer Systems
Series, winthropTuoIisQing Company, Englewood, N.J. 1976.

Halstead, M.H., "Software Science - A Progress Report". IEE
/ U.S. Army Second Software Life lycle Workshop, Augus
2l r 22. 1978T Atlanta,"?a7

Halstead, M.H., Elements of Software Science, New York, N. Y.

5*

Jeffery, D.R. and Lawrence, M.J., "Some Issues in the
Measurement and Control of Programming Productivity",
Information and Management, vol. 4, September, 1981. pp.
7B9-77o7 r rr

Jeffery, D.R. and Lawrence, M. J., "An Inter-organisational
Comparison of Programming Productivity", IEEE Proceedings of
he Fourth InternatiDa al Conference on ~S~oftwafe

2nfineerrfTgT7 1 9797" pp7~3a 5=377.

Johnson, J. R. , "A Working Measure of Productivity",
Datamation, vol. 23, no. 2, February, 1977. pp. 106-112.

Jones, T.C., "Productivity Measures", Proceedings of Guide
44, San Francisco, Ca. May 1977.

Kirkley, J. L. , "Programmer Productivity", Datamation, vol.
23, no. 5, May, 1977. pp. 63-69.

Leaman
Concep
1931

, M.M., "Programming Productivity - A Life Cycle
z "

* II1I Computer Society Conference Proceedings, Fall

Linaer, R.C., "Human Productivity and Software Development",
IEE E Computer So ciety Conference Proceedings, Fall 1981.

pp.~3H-45

McCabe, T.J., "A Complexity Measure", IEEE Tran
Software Engineering, SE-2, 1976, pp. 308=320.

sactions on

McCall, J., Richards, ?. and Walter?, G., "Metrics for
Software Qualit y ^Evaluation and Prediction", .Proceedings of
"ASA ^ Goac.arg
September, 79777"

Second Summer Engineer ing" 5orKsEoj57

Mitchell, J., "Productivity and Software Tools", IEEE
Coiguter Society. Conference Proceedings, Fall 1981.

Parikh, Girish, How to Measure Programmer Productivity,
Shetai Enterprises, "CEiacag o,TI77 T98T.

Patrick. R.l. , "Probing Productivity", Dc amat.on, Seotember
193 0, pp. 207-2 10.

Perils, A. J., Sayward, F. G and Shaw, M. (eds) , Software
Metrics: An Ana lysis and Evaluation, MIT Press, 1987, ~pp7

Sizina,
IEEE

Putnam, L.H., "Measurement Data to Support
Estimation, and Control :f the Software Life Zycle",
Com pu ter Society. Conference Proceedings, Spring 1978, ~pp7
3*57" 7

Putnam, L. H. and Fitzsimmons, A.. "Estimating Software
Costs", Datamation, vol. 25, no. 1j, September 1979, pp.
139-198.

"A Software Science Analysis of Programming
0, Proceedings of :he Annual

Con ferer.ce.TIasav ille, Tn. , ~Dcto5"er~27-29, 7980, "pp. 179-7B5.

Smith, C.P.,
<", ACM. 30,

55

ialston, C.E.
Measurement and
no. 1 , 1 977, pp,

and Felix,
Estimation" ,
54-73.

G.P., "AMethod of Programming
13 M Sy.st|ms Journal, vol. 16,

55

APPENDIX I

or SERVICES

FUNCTION VALUE INDEX WORKSHEET

Data i

•roject 10 1_

Project aamai

Prepared byi Datai Reviewed by

i

Data:

Project Sunmuy: Start Date :.i: Date work-Hours function Points Selivcrcd or Designed

i (from calculation).

Function Points Calculation (Delivered or Sjsicned)

r Allocation estimated by Project Manager

Not*: Definitions
on back of form. Delivered

by New
Coda

Delivered
by Modifying
Existing
Code

Delivered by
Installing
and Testing
a Package

Delivered
by Using
a Code
Generator

Totals
(Identify
Preponderant
Language)

Language
Inputs X 4

Outputs X 5
~

riles X 10
Inquiries X «

Work-hours total
Design
Implementation

Unadjusted
Function
Points

Complexity Id'uit-.ent: (Estimate degree of influence for each factor)

•11»M» b»cku". recovery, and/or
system availability are provided
by the application design or
Implementation. The Junctions
may be provided by specifically
designed application code or by
use of functions provided by
standard software. Tor example,
the standard IMS backup and
recovery functions.

Data communications are provided
in the application.

Distributed processing function*
are provided in the application.

Performance must be considered
in the design or implementation.

In addition to considering
performance there is the added
complexity of a heavily utilized
operational configuration. Th*
customer wants to run the
application on existing or
committed hardware that, a* a
consequence, will be heavily
utilized.

On-line data entry is provided in
the *p|>lic«nuii.

On-line data entry is provided in
the application and in addition
the data entry is conversational
requiring that an input trans-
action be built up over multiple
operations.

Master files are updated on-line.

Inputs, outputs, files, or
Inquiries are complex in
this application.

Internal processing is
In this application.

complex

Degree of Influence on Function:
None 3 Average

1 Incidental < Significant
2 Moderate S Essential

Total Degree of Influence (N)

Complexity adjustment equals (0.7S O.OI (Nl)

Unadjusted Total X Complexity Adjustment « Function Toints Delivered or Designed

X -

57

neflnltionsi

Ccfifnl Instruction:

Count all inputs, outputs, sister files,
inquiries, and (unctions that are Bade available
to the cuitoecr through the project's desiqn,
programming, or testinq efforts. For example,
count the functions provided by an IUP, FOP, or
Program product if the package was modified.
Integrated, tested, and thus provided to the
customer through the project's efforts.

Work-hours :

The work-hours recorded should be the IBM andcustoaer hours spent on the OP Services
standard tasks applicable to the project phaseThe customer hours should be adjusted to IBM
equivalent hours considering experience,
training, and work effectiveness.

Input. Count :

Count each systea input that provides business
function cossnunication from the users to ths
computer system For example:

• data forms • scanner forms or cards
• terminal »cr«ens a key<cu transactions

Do not double count the inputs. For example,
consider a manual operation that takes data
froo an input :ora, to form two input screens,
using a keyboard to form each screen before the
entry key is pressed. This snould be counted
as two (2) inputs not five (5).

Count all unique Inputs. An input transaction
should be counted as unique if it required
different processing logic than other inputs.
For example, transactions such as add. delete,
or chanqe may have exactly the same screen
format but they should be counted as unique
Inputs if they require different processing
logic.

Do not count input or output terminal screens that

are needed by the system only because of the
specific tecr.nical implementation of the
function. For example, DMS/VS screens, that
are provided only to get to the next screen
and do not provide a business function for the
user, should not be counted.

Do not count input and output tape and file data

sets. These are included in the count of files.

Output Count i

Count each system output that provides business
function communication from the computer system
to the users. For example

:

a printed reports
• terminal screens

• terminal printed output
• operator messages

Count all unique external outputs. An output is
considered to be unique if it has a format
that differs from other external outputs and
Inputs, or, if it requires unique processing
logic to provide or calculate the output data.

Do not include output terminal screens that
provide only a simple error message or
acknowledgement of the entry transaction,
unless significant unique processing logic
is required in addition to the editing
associated with the input, which was counted.

Do not include on-line inquiry transaction
outputs where the response occurs immediately.
These are included in a later question.

File Count:

Count each unique machine readable logical
file, or logical grouping of data from the
viewpoint of the user

,

that is generated,
used, or maintained by the system. For
example

:

Do not count inquiry transactions.
covered in a subsequent question.

These are

input card files
disk files

tape files

Count major user data groups within a data base.
Count logical files, not pnysical data sets.
For example, a customer file requiring a

separate index file because of the access
method would be counted as one logical
file not two. However, an alphabetical
index file to aid in establishing customer
identity would be counted.

Count all machine readable interfaces
to other system as files.

Inquiry Count :

Count each input/response couplet where an on-
line input generates and directly causes an

immediate on-line output. Data is not entered
except for control purposes and therefore only
transaction logs are altered.

Count each uniquely formatted or uniquely
processed inquiry which results in a file score:

for specific information or summaries to be
presented as response to that inquiry.

Do not also count inquiries as inputs or
outputs.

53

APPENDIX II

DP SERVICES DESIGN PHASE
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM

Section 6.2
12-31-78

Customer:

Project Description:

Project ID:.

Prepared By;

When Prepared: (check one block)

() Before any Phase Completion
() Requirements Complete
() External System Design Complete
() Internal System Design Complete

Date Prepared:

() Coding Specs Complete
() Integration Complete
() System Test Complete
() System Demo Complete

DESIGN PHASE
SIZE AND COMPLEXITY

FACTOR
ESTIMATOR FORM

DP SERVICES
DATA PROCESSING DIVISION

IBM CORPORATION

59

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

QUESTION DEFINITIONS

1. SCOPE OF THE INVOLVEMENT WITHIN THE COMPANY

a. Company Functional Organizations:

Identify the number of independent organizational entities which
will be involved either directly or indirectly in the project
For example, if the system includes two business functions
inventory control and billing, at least two organizations
probably would be involved. Direct involvement refers to actual
participation in the requirement study or design. Indirect
involvement refers to review and approval of the requirements or
design. The organizations may be counted separately in each
location. For example, if the accounting department has a
subdepartment in each of three geographic locations , and if each
must either be interviewed or included in the approval cycle,
then the accounting function should be counted as three
organizations rather than one. Always include the data
processing organization.

b. Company Locations:

Identify the number of company locations that require travel for
information, interviews or approvals. The primary location must
also be counted. Each city involved would be a location. Where
multiple locations exist in the same city, consider each as half
a location.

c. Number of people in the organizations involved:

Identify the number of hundreds of people in each organization
identified in question la) above. For example, a project
involving two organizations, one with 135 people, and one with 50
people would count as three hundreds of people. This provides a

definition of complexity of interviews and requirements
definition.

2. FUNCTIONAL SIZE OF THE APPLICATION

a. Number of Major Subsystems:

63

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM

'

12-31-78

SCOPE OF THE INVOLVEMENT WITH THE COMPANY

Number of company functional
organizations involved: x 1 =_

Number of company locations
involved: x 12 =

c. Number of 100 (s) of people in
the involved organizations: x 2 =_

Fl

61

DP SERVICES DESIGN PHASE
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM

Section 6.2
12-31-78

In general, a major subsystem is equivalent to a major
application or system function. Examples of subsystems within an
Order Processing System might be:

Order Entry
Accounts Receivable
Inventory Update
Inventory Replenishment
Shipping
Recovery and Restart
Invoicing
Management Reporting
File Administration
File Conversion

If you think that a function is logically separable and
reasonably significant in size then count it as a subsystem.

Number of External Inputs:

This question addresses all system input vehicles
business function communication from the users to
system (e.g., data forms, terminal screens, keyboa
transactions, optical scanner forms). It does not
internal inputs such as tape and file data sets,
included in the count of files. It should not inc
screens that are needed by the design only because
specific implementation (e.g., DMS/VS screens that
provided to get to the next screen but do not prov
business function or business information for the

that provide
the computer
rd
include

These are
lude input
of the
are only

ide input of a

terminal user.)

It should include the inputs associated with all the functions
committed in the design. If such functions as File Conversion
and Data Base Maintenance are to be supported their inputs must
be counted even if they are used only once.

On-line inquiry transactions should not be counted here since
they are included separately in a later question.

The obj active of this question is to enumerate all unique inputs.
An input transaction should be counted as unique if there is any
possibility that it will require different processing logic than
other transactions. For example, transactions which have exactly
the same screen format and differ only in a code used to indicate
transaction type (e.g., add, delete, change) should each be
counted separately as unique transactions

-

c. Number of External Outputs:

62

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

2. FUNCTIONAL SIZE OF THE APPLICATION

a. Number of Major Subsystems: xlO

63

b. Number of External Inputs: x 3 =

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM " 12-31-78

As with the External Inputs this question addresses all system
output vehicles that provide business function communication from
the computer system to the users (e.g., printed reports, output
screens, hard copy terminal output operator messages). On-line
inquiry transactions, where the response occurs immediately on-
line should not be included in this count. However, printed
reports which are triggered by off-line or on-line inquiries
should be included in this count. The count should not inlcude
output screens that are needed by the design only because of the
specific implementation (e.g., DMS/VS screens that are only
provided to get to the next screen but do not provide a business
function or business information for the terminal user.)

An output is considered to be unique if it has its own format
which differs from other external outputs, or if it requires
unique processing logic to provide or calculate the output data.

d. Number of Files:

This count should include each planned unique machine readable
logical file, or logical grouping from the viewpoint of the user,
that is to be generated by or input to the system (e.g., card
types, data base files, disk files, tape files). This question
is oriented toward logical files not physical data sets. For
example, a customer file requiring a separate index file because
of the access method chosen during design would be counted as 1
logical file not 2. However, a special alphabetical index file
to aid in establishing customer identity would be counted
separately.

This count should include all machine readable interfaces to
other computer systems.

e. Number of On-line Inquiry types:

This question addresses conversational input/response couplets
where the on-line input generates and directly causes an
immediate on-line output. These couplets generally do not enter
data except for control purposes and therefore alter only
transaction logs.

In determining this count consider each uniquely formatted or
uniquely processed inquiry (input/response pair) which results in
a file search for specific information or summaries of groups of
information to be presented as output response to that inquiry.

Inquiries should not also be counted as inputs or outputs.

64

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

c. Number of external Outputs: x 3 =_

65

d. Number of Files: x 7 =

e. Number of On-Line Inquiry Types: x 4 =_

F2

Ll

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM ' 12-31-78

3. COMPLEXITY OF THE OVERALL DESIGN PHASE

a. Customer Capability:

Consider whether the customer has data processing or user
capability that will provide a good environment for requirements
definition and system design or whether his people will require
more that normal explanation and justification for routine
decisions.

On the other hand does the customer have so much expertise that
his design convictions will complicate the job beyond that
normally expected. (e.g., an application well suited to IMS but
the customer wants to develop his own TCAM data base system.

)

Both situations would hinder the project.

b. Existing Customer Function:

Does the customer currently perform the business functions that
are to be included in the system or is this a new business area?

An example of a new function that would result in a "no" answer
would be, an insurance company that does not currently handle
group dental plans but wants to develop an automated system to
process group dental claims so that they can compete for that
type of business.

c. Existing EDP System:

If the answer to the previous question was No, then this question
must also be answered No. If the customer currently is
performing the majority of the business functions to be included
in the system and a significant number of these are being
supported by existing EDP System(s), the answer should be Yes.
Otherwise, the answer is No.

d. First of a Kind:

Has this application ever been computerized before, anywhere? Is
this the first attempt to automate a significant business
function in the application? A Yes to either question should
make this system the First of a Kind.

e. Hardware and Software Operational Environment:

This question is addressing the overall complexity of the
estimated operational system. An example of a Simple system

66

DP SERVICES DESIGN PHASE
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM

Section 6.2
12-31-78

. UO: i'

3. COMPLEXITY OF OVERALL DESIGN PHASE

a. Will the customer's capability hinder:
No (0), Yes (10)

b. Existing customer function to
be automated:
No (10), Yes (0)

Does an EDP system exist now
to perform the function:
No (6), Yes (0)

Is this system the first of its
kind anywhere:
No (0), Yes (10)

67

DP SERVICES DESIGN PHASE
. Section 6.2

SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

environment would be S/370 Models 115 or 125, DOS or DOS/VS and
the IBM Standard TP and data base products that operate on that
level CPU.

An example of an In Between system environment would be S/370
models 135 or 1U5, DOS r DOS/VS or OS/VS and CICS or DL/I or
something equivalent.

Large computers or more sophisticated operating System (e.g.

,

MVS) or TP or DB environment (e.g., IMS or TCAM) would be
considered as Complex. Distributed processing and programmable
terminals would also be considered complex.

4. SOPHISTICATION EXPECTED OF THE SYSTEM

a. In answering the availability question consider how important it
is that the system be kept available to the users. The whole
data processing system including communications and terminals
should be considered. Can work be postponed?

Will components be duplicated to increase system availability?
This can indicate critical availability. Will the system be
designed to recover quickly from failure? This can indicate
important availability.

A batch system usually requires normal availability. A data
collection system with non-perishable inputs, such as paper claim
forms, might justify important availability. A passenger
reservation system or bank funds transfer system might require
critical availability.

b. Will a major or important design consideration be, that each
operation or function identified as critical have an alternate
method. The alternate may involve manual operations and may take
longer but the function is provided.

c. Will the system contain data that must be protected against loss?
Will the function require special recovery design in either
procedures or system? If so, the answer is yes.

d. Data Traffic Load or System Performance:

In some systems, the volume of data to be handled is not a design
concern. Other systems require special design considerations
such as: use of file access optimization, simplified input
notation, or extensive use of exception reporting. Transaction
rates may be a problem in either on-line or batch systems. Large

63

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

(XC

;
6C

rtf.

HTX •

Hardware and software system
operational environment to be
required by the application:
Simple (0), In-between (5), Complex (10)

F3

a. SOPHISTICATION EXPECTED OF THE SYSTEM

a. Availability is: Critical (8),
Important (U), Normal (0)

b. Is an alternate method, for
performing the functions of the
system, non-routine consideration:
No (0), Yes (6)

c. Is system recovery or protection
against data loss a non-routine
consideration:
No (0) , Yes (5)

69

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

volumes of data in short periods (peak loads) or volumes of data
large enough to cause machine availability problems are all
considered data traffic considerations.

System performance is often a significant design consideration in
systems that are intended to handle large volumes of data. It
can also be of major concern in the design of systems with
relatively low transaction rates but with constraints (perhaps
economic) in terms of the prescribed hardware and software
environment. For example, there may be limitations on the size
of main storage, control program multi -programming capabilities,
or transmission line speeds.

e. Nature of the Application:

A batch system operates as a job shop, often scheduled.
Transactions are typically batched external to the computer and
periodically processed sequentially against the master files.

An on-line system generally requires a more sophisticated
man/machine interface than a batch system. It is generally a
system where transactions are entered as they" are received rfith
no opportunity for time saving sorting. The inputs are not
perishable (i.e., they can be re-entered if necessary). An on-
line order entry system, or an on-line stock location and
inventory control system would be examples of on-line.

A real-time system is similar to an on-line system in that it is
available on demand, but it has an additional requirement to not
postpone its main line processing. Response time is
exceptionally important. Immediate processing and response is
necessary to meet the functional requirements of the system.
Process control, production test stand control, and airline
reservation systems are examples of real-time systems where
degraded performance may cause lost production or lost business.

f. Processing Complexity:

This question addresses the internal processing logic required to
provide the majority of the proposed system functions.
Straightforward logic would involve simple transformations or
mapping from the system inputs or files to the system outputs.
For example, a transaction is read, verified to a limited degree
and used to update a simple master file or to generate a simple
report. Processing is a straightforward set of pre-specified
rules. Few, if any, data transformations are done. Outputs are

73

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

d. Is data traffic load or system
performance an important
design consideration:
No (0), Either (10), Both (20)

e. Nature of the Application:
Batch (0), On-Line (10), Real-Time (20)

71

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

mostly collections in various sets, of established data from
files.

Complex should be checked if the system has a preponderance of
exception processing resulting in many incomplete transactions
that must be resolved later or again. Complex logic would also
be the answer if there are many interactions and decision points
and extensive logical or mathematical equations. In-between is
used if it fails to meet either of the above definitions.

g. Exception Correction:

Systems which are designed primarily to process correct data and
to detect and present bad or unusual data for manual review and
correction are manual exception systems. If the system is to be
designed not only to detect, but also, automatically to correct a
significant number of unusual conditions, the system is an
automatic exception system. This is true even if the options
selected or corrections applied are to be reviewed and verified
manually.

5. KNOWLEDGE WE HAVE FOR THIS PROJECT

a. Consider the Services Area in general and specifically the people
who may influence the project through:

• Project Management
• Proposal Preparation
• Systems Assurance
• Project Team Performance

Consider the Area's current knowledge and the available Industry
knowledge- If none of the people in the performing Area have
designed or implemented this type of application before, the
answer should be Completely New. If informed consultation and
review is available with people in the Area the answer should be
Some Familiarity. If Services people, clearly expected to
participate significantly in the proposal and project, are
currently assigned to the performing Area and have recently
performed on a similar project the answer may be Have Done
Similar Job Once.

b. To answer Extremely Thorough the proposal should contain a
technical baseline that shows excellent understanding of the
tasks in the Statement of Work. The Customer User, IBM Branch,
and DP Services must have contributed and concurred with the
approach. Everything else should be moderate unless we lack

72

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

511

Processing complexity:
Straightforward (0),
Complex (30), In-between (15)

Exception Correction is mostly:
Manual (0), Automatic (20)

F<»

5. KNOWLEDGE WE HAVE FOR THIS PROJECT

a. How familiar is the proposed
Services Area with this Application:
Completely New (30), Some
Familiarity (15) , Have done
Similar job once (0)

73

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

customer agreement either through lack of contact or because of
direct disagreement.

6. READINESS TO PERFORM THIS PROJECT

a. Consider the location of the project with respect to the home
location of the people expected to work on it. Unless local
commuting habits and ground rules indicate otherwise, travel of
more than one hour each way to the work location should be
considered Significant Commuting.

b. Consider the proposed manning on the project. Normally the
manning on DP Services projects comes from DP Services, the IBM
Branch, or the Customer. If the manning is proposed with
elements other than these, (i.e., subcontract or shop order) mark
an equivalent answer from the viewpoints of Project Management
control and the resource's ability.

c. All temporary or permanent moves of project team members should
be considered whether they involve IBM people or customer people.

THE SIZE AND COMPLEXITY FACTOR COMPUTATION:

To compute the Design Phase Size and Complexity Factor that will be used
to validate the task-by-task estimate follow these steps:

1. Review and sum up the weighted answers to the questions to
determine factors Fl through F6.

2. Enter Fl through F6 and evaluate the equations on page 19.

3. Sum the results of (1), (2) and (3) to obtain the Design Phase
Size and Complexity Factor.

ESTIMATE VALIDATION:

Use the Design Phase Size and Complexity Factor and the plots provided
in Section 6.2 to determine the average number of hours that the
standard tasks took on completed DP Services projects with similar
Design Phase Size and Complexity Factors. Enter these hours in the
appropriate blanks on page 20.

If the data is sparse, the information on each standard task may not be
provided as a separate number. However, the hours spent on that task
are in the totals and in the associated standard task. (e.g. , the hours

7U

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

b. Services Preproposal Analysis:
Extremely thorough (0),
Moderate (10), No customer agreement with
approach (20)

F5

6. READINESS TO PERFORM THIS PROJECT

a. Where is project to be located:
No unusual commuting (0)

,

Significant Commuting (5),
Temporary or permanent moves
required (10)

b. Manning:
All Services (0), Mixed IBM Manning (5),
Customer and IBM Mixed (10)

c- Number of temporary and permanent
moves required

x 5 =

F6

75

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

for implementation planning may not be separately identified, but they
would be in the internal system design task and in the total hours.)

Map the task-by-task estimate into the same standard tasks and compare
the estimates. The Proposal Manager should analyze and explain any
differences or make the appropriate adjustments in the task-by-task
estimate and the proposal.

FEEDBACK PROJECT RESULTS:

After the project is completed and the PCAR is available, adjust the
Design Phase Size and complexity Factor. The factor needs to be
adjusted to account for changes (approved PCR(s)) that occurred during
the project. This adjustment provides a factor that should be related
to the completed project's results:

Original S S C - The original size and complexity factor computed
at proposal time on page 19.

Change Hours - The total estimated hours of approved changes
taken from the PCAR.

Total Hours
Multiplier - The current factor multiplier for the total

hours plot in the design phase estimator.

Adjusted S & C - The size and complexity factor used for project
feedback of results adjusted for the approved
changes.

Adjusted S C C = Change Hour

3

Original S & C
Total Hours Multiplier

The results of the completed project standard tasks and the delivered
reports are also taken from the PCAR. If the project does not represent
a complete design phase, the numbers must be used with care. (e.g., a
requirements only design phase can give a good requirements number. It
certainly won't give any design numbers. Less obviously, it won't give
any management numbers or total hours numbers either)

.

75

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

THE SIZE AND COMPLEXITY FACTOR COMPOTATION:

1. Orientation Factor:

() (100 () ()) x .9/1000 =
Fl F5 F6

2. Requirements Analysis Factor:

() (100 (

F2

()/10 () (

Fa F5 F6

3. System Design Factor:

)/3

) ()

Fl F3

)/10 () (

(

F2
) (100 (

F3
)/2 (

FU

(

F5
)/4> 1.7/1000 =

Size and Complexity Factor =

Sum(l),(2),(3)

77

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

ESTIMATE VALIDATION:

Total Hours

System Design

External System Design
Internal System Design
Implementation Plan

Requirements Definition

Orientation

Management

System Design Report Size

Requirements Report Size

From From
S fc C Factor Task-By-Task Comments

79

DP SERVICES DESIGN PHASE Section 6.2
SIZE AND COMPLEXITY FACTOR ESTIMATOR FORM 12-31-78

FEEDBACK OF RESOXTS:

Adjust Size and Complexity Factor: By: Date:

() () = (> Adjusted Size and Complexity
() Factor

Completed Project Results: By: Date:

Total Hours

System Design

External System Design'
Internal System Design
Implementation Plan

Requirements Definition

Orientation

Management

System Design Report Size

Requirements Report Size

79

IIITIAL DISTRIBUTION LIST

Code 54

9. LCDR David F. Spooner, MC, USNR
64 35 Wing Point Road N. E

.

3a ir.br idqe Island. Washington 98110

10. Carolyn Wong
2500 Colorado Avenue
M.D. 3 2-61
Santa Monica, Caiizornia 90405

11. Dr. Barry 3oehm
TRW-DSG
1 Space Parle, R2-1076
Redor.do Beacn, California 90273

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Curricular Office , Code 37 1

Naval Postgraduate School
Monterey, California 93 940

4. Dan C. Soger 1

Administrative Sciences Department
Code 54bk
Naval Postgraduate School
Monterey, California 93 940

5. LCDR John Hayes, SC t USN 1

Administrative Sciences Department
Code 54ht
Naval Postgraduate School
Monterey, California 93940

6. Lieutenant Daniel J. Spooner, USN 1

124 Browneli Circle
Monterey, California 93 940

7. Norm Lyons 1

Administrative Sciences Department
Code 541b
Naval Postaraduate School
Monterey, California 93 940

8. Chairman
Administrative Sciences Department,
Naval Postgraduate School
Monterey, California 93 940

33

12. Rich Patrick
Amdahl Corporation
1250 East Arguez Avenis
P.O. 470
Sunnyvale, California 94086

13. Fleet Material Support Office
Code 92
Mechanicsbur g, Pennsylvania 17055

14. Fleet Material Support Office
Code 92E
Mechanicsbur g, Pennsylvania 17055

15. Fleet Material Support Office
Code 92T
Mechanicsbur g, Pennsylvania 17055

81

200172
Thesis
S668617 Spooner

#
A study of quant-

itative measurements
of programmer prod-
uctivity for fleet
material support
office (FMSO).

30 JUL 84 2971|5

Thesis

S668617 Spooner
C.i A s tudy of quant-

itative measurements

of programmer prod-

uctivity for fleet

material support

office (FMSO).

